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f. Oa the differential efmations of shalior shells in the case of 

normal Ionding. The differential equations of the technical theory of 

shallow shells can, In the case of loading Z normal to the surface of the 

shell, be written in the following form as suggested by Vlasov [l I,[2 1 

f:Iz” 
&A? + Eh&,w = 9% rtnnw --.A,? =Z, D- $2(i--vV’) (i.1) 

The unknowns here are the normal deflection w and the stress function 

4, while the loading components X and Y are taken to be zero; the shell 

thickness h is considered to be constant, E is the modulus of elasticity 

of the material and w is Poisson’s ratio. The operators 13 and .Jk 8re de- 

fined by 

(1.2) 

Here Lx, k represent the bending curvature and kzy is the-torsional 

curvature of I he shell surface. 

Denoting by F the function determining the surface of the shallow 

shell, we have approximately 

The normal stress resultants Nx and My and the tangential stress re- 
sultant S, the bending stress moment resultants Mx and d9y and the torsional 

stress moment resultant Mzy are defined by 

972 
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a29 
Ny=a,r, III, = -D g+vg) ( 

a29 
S=--$ nr,, = - 

a%1 

D(l -4 azay 

(1.5) 

The surface of the shell, the system of coordinates and the positive 

directions of the stress resultants are shown in Fig. 1. The plane Oxy 

is the coordinate plane of the shallow shell. The moving system of co- 

ordinates O‘Y’Y’Z’ is connected with an arbitrary point of the shell in 

such a manner that the axes x’y’ are situated in the tangential plane, 

while z’ is directed along the normal to the shell surface. The axes x’ 

and y’ are located respectively in the planes y = const and x = const. 

The positive directions of the displacements u, v, w and of the compo- 

nents X, Y, Z of the distributed surface loading respectively coincide 

with the directions of the coordinate axes x’, y,‘, z’. 

Introducing the scalar function R by means of the formulas 

w = AAW, ‘p= - Eh&W 

Vlasov [ 1 1 transforms the system (1.1) into 

DLULDDW + EkL!,,&W = 2 

It is convenient to use this equation in cases 

(1.6) 

(1.7) 

when the curvatures kZ 

and ky are constant, while the curvature k xy is zero. 

Attention must be paid to the fact that the formulas (1.6) and (1.7) 

become incorrect in the case of a spherical shell. Indeed, if kz = ky = 

l/R = const and kzy = 0, equations (1.6) assume the form 

w = AAW, E AW, 
i aa 1 a= 

‘p=- R 
-- -- 

nk = & ay* f fi axa =+a (1.8) 

Eliminating A from these equations, we get 

w=--_ :h A’p U.9) 

On the other hand, the first equation of the original system (1.1) 

gives the formula 

R 
Aw=-,,ALh (1.10) 

It is obvious that the formulas (1.9) and (1.101 are not identical, 
as they should be. Consider the following example: if A$ =O. then we 
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have v = 0 according to (1.9) and AO = 0 according to 

the special case of the spherical shell the equations 

Dnnn&c+ s AAW = 2 

(1.10). Thus, in 

(1.11) 

(1.12) 

obtained from (1.7) and (1.81 are not correct, and thus can lead to 

erroneous results. 

Y' 

Fig. 1. 

In the case of a spherical shell we have to use the original system of 

differential equations (1.1). or a new function R l defined by the 

formulas 

AW = AW*, (1.13) 

Eliminating I’ from the two formulas given above we obtain (1.10). as it 

should be. 

Substituting the formulas (1.131 into the second equation of the system 

(1.1) we find 

Eh 
DAAW*+.,W*=Z (1.14) 
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The equations (1.13), unlike (1.8) and (1.12). are correct, and there 

is no danger of their leading to faulty results. 

2. On the differential equations of shallow shells in the case of 

arbitrary loading. In the case of arbitrary loading, a system of three 

differential equations, also suggested by Vlasov [ 2 1 can be used; the 

unknowns occurring in these equations are the components u, v, v of the 

complete displacement. The system just indicated is, however, relatively 

involved and inconvenient for practical application in most cases. It is, 

therefore, desirable to derive a generalization of the system (1.1) 

applicable to any loading. 

For the special case of circularly cylindrical shells such a general- 

ization is given in the book by Ruediger and Urban [ 4 1. 

It so happens that the desired generalization can also be easily ob- 

tained for the general case of a shallow shell with arbitrary curvatures. 

It is only necessary to replace the first two of the relationships (1.5) 

by the following: 

(2.1) 

Now we can proceed as indicated by Vlasov [2 1 and confint ourselves 

solely to linear terms. In this manner we find 

(2.2) 

Instead of the system (2.2) we may use the differential equation with 

complex coefficients obtained by substitution of 

This leads to 

After having carried out the 

the deflection IO and the stress 

imaginary parts of u*. 

integration and determined II*, we find 

function C$ by separating the real and 

If the stress resultants are known, the displacement components of 
the shell are determined by the following system of differential equations: 
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all 1 
‘ax - k,lO - Fh (“, - Vh’“) 

an 1 
- - x;w = rT, (NV - WV,) 
aY (2.5) 

g. + 2;. _ 2kVUW = X!Lg s 

3. The case of uniformly distributed tangential loading. If the plane 
view of the shell is rectangular and if the torsional curvature is zero, 

then the solution of the problem is very simple. We assume the usual 

boundary conditions, namely: the shell is loosely supported, while the 
stringers are rigid in their own plane and flexible outside it. 

Without loss of generality we assume that the tangential loading is 

acting parallel to one coordinate axis. In this case we may write 

. 
x = XIJ = const, Y=Z=O, k,, = 0, a X,tlx = x0x 

w, v, Al,, N, = Owhen x = 0 and r = n; u’, u, iUU, N, = Owheny = Oand y = G 

The system (2.2) assumes the form 

n@q + I:h&u; = I), II&Jw - /&rp == - k,Sox 13.1) 

It is easy to verify that this system and the boundary conditions for 

M M w, x’ 
Y’ 

N, and NY are satisfied if 

u’ = 0, p~~&3.,f/~+cIfJ (3.2) 

The constant C is to be determined from the boundary conditions for a 
and v. All stress resultants, except the tangential stress resultant S 
are zero. We find 

, .> 
s = - $$ : - _‘yoy -- (: (3.3) 

Substituting the values of tv and of the stress resultants into the 
system (2.5) we get 

nu nz: 
-~~~ =o, 
8X 

-~ ___o 
&L i3V 

&, , ‘af+-ax-=- 2 ‘;; v, (XOY + 0 (3.4) 

From the first two equations of this system we see that u can be a 
function of y only, and v of x only. In this case the third equation of 
the system (3.4) becomes 

(3.5) 
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For the displacements II and u we must assume 

1+v 
UC- 

+- XoY2 + GY + C?, v = Cax f c, 

where C1, C2, C3, C4 are constants of integration. Substituting (3.6) 

into (3.5) we find 

c1+cs=- f$h 

2(1 +4 c 

On the basis of the boundary conditions assumed for u and v we get 

c 

1 
= (l+v)b x 

bh O’ c* = cs = c, = 0 

(3.6) 

(3.7) 

(3.5) 

Taking into account (3.2). (3.3), (3.6), (3.7), (3.8), we obtain 

i+v 
u=x Y(b-Y)Xot 9= - ; (b - Y) ZYXO, s = ; (b - 2y) x0 (3.9) 

All other displacements and stress resultants are zero. Note that the 

formulas obtained are independent of the curvatures k and k , which thus 

remain arbitrary. This is a case in which the shallow’shell bYehaves like 

a deep beam. 

The problem becomes more difficult if the torsional curvature kxy is 

not zero. In this case it is convenient to assume 

Here we assume for w0 and &, the results (3.9), i.e. 

u’o = 0, q. = - -;- (b - y) xyx, (3.11) 

10~ and c+$ satisfy the assumed boundary conditions exactly. Including 

(3.10) into the system (3. I), we get 

(3.12) 

by virtue of which the further treatment of the problem reduces to an 

investigation of the structure under the action of the fictitious normal 

loading 

z* z kx, (b - 2~) xo 

4. Shell of constant curvature under arbitrary tangential loading. 

This problem has been studied by Oniashvili [3 1 under the assumption of 

vanishing torsional curvature in connection with the usual boundary con- 
ditions (loosely supported shell with stringers of the kind stated above). 
He derived his formulas immediately from the conditions of equilibrium. 

The discussion of the same problem given below is based upon the relations 
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(2.1) and (2.2). The solution is obtained with the aid of double trigono- 

metric series. To simplify the presentation we will study the influence 

of one arbitrary term of the series only, for the loading A’. 

On this basis we may write 

We consider the constants Xnn to be known quantities, while for ID and 

4 we assume 

IL‘ = .1 I ,,,, siri I)Ii32 sin _!I?!!, si1-j nlxz sin ‘xy 
a 0 

v = B,, 
a 0 

(4.2) 

The expressions (4.1) and (4.2) satisfy the assumed boundary conditions 

precisely. 

Substituting (4.1) and (4.2) into the system (2.2), we obtain a system 

of linear algebraic equations, from which 

U’PZ J)12 (k, + Ykz) + _).*Jl’ I(2 + V) ,kl - k,] x 

A Dx5 mn=- (m’ + hW)4 + p (kpz” + k,hW)2 mn 

a3 
B 

(m2 + hW) (h *n2 - Vm*) + pkl (k2m2 _1- k,h*n*) 
(4.3) 

mn=-xSm (mZ + AW)4 + p (k*m” + klh%“)” 
X 

mn 

where 

A=-& 
12 (1 - 9) a4 

II= +h” * k, = kl = cons:, k, = kt = const 

Using the formulas (1.5), (2.1), (2.5) for the displacements and the 

stress resultants, we get 
a2 1 

I4 = x”_!Lh 41 (m, h) - ~ (42 (m, n) [(I - v2) m2 + 2 (1 + v) A2n2] + 

mzx 
+ ;r [(k12 + ks2 + Zvklk2) m* + 2 (1 + v) k12h2n2]) X,, cos y- sin? (4.4) 

a2mhn (1 + v)* QP (m, n) + v 61 - k2)2 x 
v=-x”th.----- 81 @a, n) mn 

sir, mnx cos nxy 
a b 

am QP (m, n) fm2 + (2 + v) A2n21 -i haa (m, n) mm :l; _ 
r x 41 0% s) 

X,, sin --y- sin 7 (4.5) 

am 82 (m, h) 34 0% n)+k& (m, n) x 
N,= y 8, (/IL, IL) mn 

sin E sin nxy 
a b 

aan s2 (m, n) s4 (m, n)-thh (I)L, 4 JJ1XX nxy 
s=y $1 (JJZ, n) 

X mn cos 7 cos - b 

M = _ dm (m2 + v12n2) 45 (m, n) X mrz n?TlJ 

x 79 41 On, n) 
mn sin 7 sin7 

a3m (h’n2 f wn’) 8; (m, n) mx5 
M,, : - 

i+’ 
___-- X 
u, (/IL, n) 

,nsin a sin?’ b (4.6) 

M __ _ (1 - v) n3m% ,Y1, (m, n) x r?LTCX n*y 
aI - 3 UI (m, n) mn cos 7 cos 0 
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where 
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a1 (m, n) =(m2 + h2n2)4 + p (k2m2 + klh2n2)2 

Q2 (m, n) = (m2 + J.%2)2, 93 0% n) = p (k2m2 + kIh2n2) 

94 (nt, n) = l%l” - vn13, a5 (m, n) =: m2 (k, + vk2) + X”n2 [(2 + v) kl - k,] 

Summation with respect to I and n permits the influence of all terms 

of the series for the tangential loading X to be estimated. 

It should be noted that, if X depends on y only (II = O), the displace- 

ments 10 and v and the resultants Nx and NY are zero everywhere on the 

shell surface. Furthermore, if X = X9 = const and 

0-J 

then by improving the convergence of the infinite trigonometric series by 

the method of Krylov, we obtain formula (3.9), as was to be expected. 
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